Multiscale and Multitemporal Road Detection from High Resolution SAR Images Using Attention Mechanism

نویسندگان

چکیده

Road detection from images has emerged as an important way to obtain road information, thereby gaining much attention in recent years. However, most existing methods only focus on extracting information single temporal intensity images, which may cause a decrease image resolution due the use of spatial filter avoid coherent speckle noises. Some newly developed take into account multi-temporal preprocessing stage noise SAR imagery. They ignore characteristic objects such consistency for multitemporal that cover same area and are taken at adjacent times, causing limitation performance. In this paper, we propose multiscale network (MSMTHRNet) imagery, contains enhancement module (TCEM) fusion (MSFM) based mechanism. particular, TCEM make full submodule applies mechanism capture contextual information. We enforce constraint by enhanced feature representations imagery help distinguish real roads. Since width roads various, incorporating features is promising improve results detection. MSFM learned weights combine predictions different scale features. there no public dataset, build dataset evaluate our methods. State-of-the-art semantic segmentation HRNetV2 used baseline method compare with MSHRNet MSMTHRNet. The MSHRNet(TAF) whose input after adopted proposed On test MSMTHRNet over 2.1% 14.19%, respectively, IoU metric 3.25% 17.08%, APLS metric. improves MSMTHRNet(TAF) 8.23% 8.81% metric, respectively.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Urban Change Detection Using Multitemporal SAR Images

........................................................................................ I SAMMANFATTNING .................................................................... IV ACKNOWLEDGEMENTS ........................................................... VII TABLE OF CONTENTS ................................................................. IX LIST OF FIGURES ......................................

متن کامل

Change Detection Using Multitemporal SAR Images

................................................................................................ i Acknowledgements ............................................................................. iii

متن کامل

Road Extraction from High Resolution Multi Aspect Sar Images

In this paper, we propose a fusion strategy for extracted roads from multi-aspect SAR images. The fusion strategy extends a system for automatic road extraction from SAR images based on line extraction and explicitly modeled knowledge, which has been developed for single SAR images. Due to the side-looking geometry of SAR, the visibility of roads is often limited by adjacent high trees or build...

متن کامل

Analysing multitemporal SAR images

Applications of multitemporal SAR data in many cases require accurate estimates of the backscattering coefficient at each time. Here we describe how multitemporal and spatial filtering can be combined in a processing chain to greatly improve the radiometric accuracy of the data and how the general methods can be simplified in the case of ERS data. The results will be illustrated using ERS-2 ima...

متن کامل

Road Detection from High and Low Resolution Satellite Images

Road extraction from satellite imagery has become a heated research subjects in recent years. It is especially used in the city planning, cartography and to update previously detected roads in Geographic Information Systems (GIS) environment.In this study automated road extraction technique is applied to four different satellite images (SPOT, IKONOS, QUICKBIRD, ASTER) with different resolutions...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Remote Sensing

سال: 2021

ISSN: ['2072-4292']

DOI: https://doi.org/10.3390/rs13163149